

Available online at www.sciencedirect.com



Journal of Organometallic Chemistry 690 (2005) 1198-1204

Journal ofOrgano metallic Chemistry

www.elsevier.com/locate/jorganchem

# Metallo-Carbosiloxan-Dendrimere mit Titanocendichlorid-Endgruppen

Roy Buschbeck, Heinrich Lang \*

Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Lehrstuhl Anorganische Chemie, Straße der Nationen 62, D-09111 Chemnitz, Germany

> Eingegangen am 13 Juli 2004; akzeptiert am 27 Oktober 2004 Vorhandenes on-line 21 Dezember 2004

#### Zusammenfassung

Die Darstellung von titanocendichoridfunktionalisierten Carbosiloxandendrimeren der 1. und 2. Generation wird vorgestellt. Zur Einstellung der Reaktionsbedingungen wurde Me<sub>2</sub>ClSiH (1) mit ( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>2</sub>CH=CH<sub>2</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub> (2) zur Reaktion gebracht. Die besten Resultate wurden mit dem Karstedt Katalysator erhalten, wobei ausschließlich das β-Isomer (( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>Cl)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>, 3) gebildet wird. Unter analogen Bedingungen reagiert Me<sub>3</sub>SiOCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H (4) mit 2 zu ( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>(CH<sub>2</sub>)<sub>4</sub>CH(Me)OSiMe<sub>3</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub> (5). Verwendet man an Stelle von 1 und 4 die Carbosiloxane MeSi(OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H)<sub>3</sub> (6), Si(OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H)<sub>4</sub> (8) bzw. MeSi[O(CH<sub>2</sub>)<sub>3</sub>SiMe(OCH(Me)(CH<sub>2</sub>)<sub>4</sub>-SiMe<sub>2</sub>H)<sub>2</sub>]<sub>3</sub> (10), so lassen sich die entsprechenden Metallodendrimere MeSi[OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)TiCl<sub>2</sub>]<sub>3</sub> (7), Si[OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>]<sub>4</sub> (9) und MeSi{O(CH<sub>2</sub>)<sub>3</sub>SiMe[OCH-(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>]<sub>4</sub> (1) isolieren.

Die Verbindungen 3, 5, 7, 9 und 11 wurden durch die Elementaranalyse sowie IR- und NMR-spektroskopisch ( ${}^{1}H$ ,  ${}^{13}C{}^{1}H$ },  ${}^{29}Si{}^{1}H$ ) charakterisiert.

© 2004 Elsevier B.V. All rights reserved.

## Abstract

The synthesis of titanocenedichloride end-grafted carbosiloxane dendrimers of the 1<sup>st</sup> and 2<sup>nd</sup> generation is reported. To find the optimal reaction conditions, Me<sub>2</sub>ClSiH (1) was reacted with ( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>2</sub>CH=CH<sub>2</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub> (2). The best result could be obtained with the Karstedt catalyst, whereby exclusively the  $\beta$ -isomer (( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>Cl)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub> (2). The best result could be obtained with the Karstedt catalyst, whereby exclusively the  $\beta$ -isomer (( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>Cl)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>, 3) is formed. Under similar conditions Me<sub>3</sub>SiOCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H (4) reacts with 2 to give ( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>(CH<sub>2</sub>)<sub>4</sub>CH-(Me)OSiMe<sub>3</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub> (5). When using MeSi(OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H)<sub>3</sub> (6), Si(OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H)<sub>4</sub> (8) and MeSi[O(CH<sub>2</sub>)<sub>3</sub>SiMe(OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H)<sub>2</sub>]<sub>3</sub> (10) instead of 1 and 4, the respective metallo dendrimers MeSi[OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>]<sub>3</sub> (7), Si[OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>]<sub>4</sub> (9) and MeSi{O(CH<sub>2</sub>)<sub>3</sub>SiMe[OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>]<sub>4</sub> (9) and MeSi{O(CH<sub>2</sub>)<sub>3</sub>SiMe[OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>]<sub>3</sub> (11) can be isolated.

Compounds 3, 5, 7, 9 and 11 were characterised by elemental analysis as well as IR and NMR spectroscopy  $({}^{1}H, {}^{13}C{}^{1}H\}$ ,  ${}^{29}Si{}^{1}H$ .

© 2004 Elsevier B.V. All rights reserved.

Keywords: Carbosiloxane dendrimers; Hydrosilylation; Karstedt catalyst; Metallo dendrimers; Titanocenedichloride

\* Corresponding author. Tel.: +49 371 531 1673; fax: +49 371 531 1833.

E-mail address: heinrich.lang@chemie.tu-chemnitz.de (H. Lang).

# 1. Einleitung

Vor kurzem wurde über die Synthese von Carbosilanund Carbosiloxandendrimeren, welche endständige

<sup>0022-328</sup>X/\$ - see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2004.10.060

Metallocendichlorid-Bausteine wie  $(\eta^5-C_5H_4)(\eta^5-C_5H_5)-MCl_2$  (M = Ti, Zr, Hf) aufweisen, berichtet. [1–3] Diese Moleküle lassen sich als katalytisch aktive Spezies in der Polymerisation von  $\alpha$ -Olefinen erfolgreich einsetzen, wobei gefunden wurde, dass die katalytische Aktivität

 $C_5H_5$ )TiCl<sub>2</sub> (2) mit den HSi-terminierten Carbosiloxandendrimeren zu finden, haben wir zunächst 2 mit Me<sub>2</sub>-SiHCl (1) (Reaktionsgleichung (1)) bzw. Me<sub>3</sub>SiO-CH(Me) (CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H (4) (Reaktions- gleichung (2)) zur Reaktion gebracht.



mit zunehmender Generationenzahl steigt. [1,3] Die entsprechenden Metallodendrimere lassen sich dabei durch die Hydrosilylierung von Carbosilan-bzw. Carbosiloxandendrimeren, die endständige Si(CH<sub>2</sub>)<sub>n</sub>CH=CH<sub>2</sub>-Einheiten (n = 0, 1) aufweisen, mit  $(\eta^5 - C_5 H_4 Si Me_2 H)(\eta^5 - C_5$ C<sub>5</sub>H<sub>5</sub>)MCl<sub>2</sub> darstellen. Eine weitere Möglichkeit zur Synthese solcher Systeme ist in der Umsetzung von  $(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_5)MCl_2$  mit HSi-terminierten Dendrimeren gegeben, wobei die letztgenannte Variante wesentlich effizienter ist. Der limitierende Faktor dabei ist jedoch die Darstellung der entsprechenden SiH-funktionalisierten Carbosiloxandendrimere. [3] Eine Ausnahme stellen Dendrimere mit dem HMe2-Si(CH<sub>2</sub>)<sub>4</sub>CHMeO-Baustein dar, welche durch die Alkoholyse von SiCl-funktionalisierten Dendrimeren mit HOCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H zugänglich sind [4].

Wir berichten hier über die Synthese von Metallocarbosiloxandendrimeren ausgehend von Me<sub>4-n</sub>Si(OCH-(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H)<sub>n</sub> (n = 3, 4), MeSi[O(CH<sub>2</sub>)<sub>3</sub>SiMe-(OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H)<sub>2</sub>]<sub>3</sub> und ( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>2</sub>CH= CH<sub>2</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>.

#### 2. Resultate und Diskussion

Um die optimalen Reaktionsbedingungen zur Hydrosilylierung von  $(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_4SiMe_2)(\eta^5-C_5H_5KiMe_2)(\eta^5-C_5H_5KiMe_2)(\eta^5-C_5H_5KiMe_2)(\eta^5-C_5H_5KiMe_2)(\eta^5-C_5H_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5KiMe_2)(\eta^5-C_5K$ 

Das beste Ergebnis wird bei der Umsetzung von 1 und 4 mit 2 unter Verwendung des Karstedt Katalysators in Tetrahydrofuran als Lösungsmittel bei 25 °C erhalten. Von Vorteil dabei ist, dass 1 sowie 4 im Überschuss eingesetzt werden können. Dadurch wird eine vollständige Hydrosilylierung von 2 mit 1 bzw. 4 gewährleistet.

Überträgt man die oben gefundenen Reaktionsbedingungen auf die Carbosiloxandendrimere MeSi- $(OCH(Me)(CH_2)_4SiMe_2H)_3$  (6),  $Si(OCH(Me)(CH_2)_4 SiMe_2H)_4$  (8) und  $MeSi(O(CH_2)_3SiMe[OCH(Me)-$ (CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>H]<sub>2</sub>)<sub>3</sub> (10), so erhält man jedoch ein Produktgemisch bestehend aus nicht vollständig umgesetztem 6, 8 bzw. 10 und den Metallodendrimeren MeSi[OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>(η<sup>5</sup>- $C_5H_4$ )( $\eta^5$ - $C_5H_5$ )TiCl<sub>2</sub>]<sub>3</sub> (7), Si[OCH(Me)(CH<sub>2</sub>)<sub>4</sub>- $SiMe_2CH_2CH_2SiMe_2(\eta^5-C_5H_4)(\eta^5-C_5H_5)TiCl_2]_4$ (9) bzw. MeSi{O(CH<sub>2</sub>)<sub>3</sub>SiMe[OCH(Me)(CH<sub>2</sub>)<sub>4</sub>SiMe<sub>2</sub>CH<sub>2</sub>- $CH_2SiMe_2(\eta^5-C_5H_4)(\eta^5-C_5H_5)TiCl_2]_2\}_3$  (11) (Reaktionsgleichungen (3) und (4)). Die Abtrennung von analytisch reinem 7, 9 und 11 von den Ausgangsverbindungen 6, 8 und 10 durch die GPC gelingt aufgrund zu geringer Molekularge- wichtsdifferenzen nicht. Erst die Verwendung von einem 1.2-fachen Uberschuß an 2 führt zum Erfolg. Neben 7, 9 und 11 finden sich zwar noch geringe Mengen an 2 in der Reaktionslösung, dieses läßt sich. im



Gegensatz zu weiter oben, jedoch durch die präparative GPC von 7, 9 bzw. 11 abtrennen.

Während 3 einen orangeroten Feststoff darstellt, sind 5, 7, 9 und 11 dunkelrot und von pastöser Konsistenz. Alle Komplexe lösen sich in herkömmlichen organischen Lösungsmitteln wie Tetrahydrofuran, Diethylether oder Dichlormethan.

Die Verbindungen 3, 5, 7, 9 und 11 wurden durch die Elementaranalyse und spektroskopisch (IR, <sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}, <sup>29</sup>Si{<sup>1</sup>H} NMR) vollständig charakterisiert. Von 9 konnte zusätzlich ein ESI-TOF Massenspektrum aufgenommen werden.

Charakteristisch für **9** ist das Auftreten des Molekülionenpeaks  $[M + K]^+$  bei m/z = 2037 sowie des Fragmentions  $[M - Cl]^+$  bei m/z = 1963 im Massenspektrum.

In den IR-Spektren der Titanocendichloridkomplexe 3 und 5 bzw. der Metallodendrimere 7, 9 und 11 findet man für die SiC- und SiOC-Bausteine, wie für diese Einheiten typisch ist, Banden bei 1250 bzw. 1050 cm<sup>-1</sup>, die sich in ihrer Lage von denen der Ausgangsverbindungen 1, 4, 6, 8 und 10 allerdings nicht signifikant unterscheiden [4].

Die HSi-Bausteine in 1, 4, 6, 8 und 10 erscheinen bei ca. 2110 cm<sup>-1</sup> als scharfe Banden. Die Addition der HSi-Einheit an die C=C-Doppelbindung in 2, welche bei 1595 cm<sup>-1</sup> ( $v_{C=C}$ ) beobachtet wird, führt mit zunehmender Reaktionsdauer im Resultat zur Bildung von SiCH<sub>2</sub>CH<sub>2</sub>Si-Teilstrukturen und damit zum vollständigen Verschwinden der  $v_{SiH}$ - und  $v_{C=C}$ -Absorptionsbanden. Damit eignet sich die IR-Spektroskopie in hervorragender Weise, den Verlauf der Hydrosilylierung von 2 mit 1, 4, 6, 8 und 10 spektroskopisch zu verfolgen.

Ebenso wie die IR-Spektroskopie sind NMR-Untersuchungen zum Studium des Reaktionsablaufs von 1,



4, 6, 8 und 10 mit 2 geeignet, da die Resonanzsignale der SiH- bzw. SiCH==CH<sub>2</sub>-Bausteine im <sup>1</sup>H NMR Spektrum in einem chemischen Verschiebungsbereich erscheinen, in dem keine anderen Resonanzsignale auftreten. Zusätzlich zu den typischen Protonenresoanzsignalen für das dendritische Grundgerüst [4] findet man für die ( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>Si)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub>-Einheiten ein Singulett bei ca. 6.6 ppm für die äquivalenten Protonen der C<sub>5</sub>H<sub>5</sub>-Gruppe sowie zwei Pseudotripletts (AA' BB' Spinsystem) bei 6.7 bzw. 6.9 ppm mit  $J_{HH}$  = 3.4 Hz für die C<sub>5</sub>H<sub>4</sub>-Fragmente, welches typisch für Metallocene der allgemeinen Zusammensetzung ( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>R)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub> (R = einbindiger organischer Rest) ist [5].

In den <sup>13</sup>C{<sup>1</sup>H} NMR-Spektren der neu dargestellten Metallodendrimere erscheinen für die vorhandenen Cyclopentadienylreste vier Signale zwischen 120 und 132 ppm. Die Kohlenstoffatome der Carbosiloxan-Einheiten finden sich zwischen 5 und 70 ppm, wobei die SiOC-Einheiten im Vergleich zu den SiC-Gruppen bei tieferem Feld in Resonanz treten [4].

Wie die  ${}^{1}H^{-}$  und  ${}^{13}C{{}^{1}H}^{-}$  NMR-Aufnahmen eignen sich auch die  ${}^{29}Si{{}^{1}H}^{-}$  NMR-Spektren, um zu zeigen, dass einheitliche Metallodendrimere erhalten worden sind. Exemplarisch ist das  ${}^{29}Si{}^{1}H{}^{-}$  NMR-Spektrum von 9 in Abbildung 1 wiedergegeben.

Für den SiO<sub>4</sub>-Kern in **9** findet man, wie erwartet, ein Resonanzsignal bei -86.4 ppm. [3b,6] Die Siliciumatome der äußeren SiMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SiMe<sub>2</sub>-Fragmente geben sich mit Signalen bei 4.6 ppm (CH<sub>2</sub>SiMe<sub>2</sub>CH<sub>2</sub>) bzw. -1.9 ppm (SiMe<sub>2</sub>C<sub>5</sub>H<sub>4</sub>) zu erkennen.

Rahmen dieser Untersuchungen wurden Im Carbosiloxan dendrimere mit peripheren Titanocendichlorid-Bausteinen erhalten. Die Synthese des Carbosiloxangerüstes basiert auf alternierenden Alkoholyse-Hydrosilylierungs-Sequenzen. Die Einführung der Sandwich-Komplexe gelingt durch die Umsetzung von SiMe2H-terminierten Carbosiloxanen mit  $(\eta^5-C_5H_4SiMe_2CH=CH_2)(\eta^5-C_5H_5)TiCl_2$ . Im Vergleich zu den von Seyferth bzw. Gomez und de la Mata dargestellten Metallocarbosilanen ist der Aufbau solcher Systeme unter Verwendung von Carbosiloxanen weniger aufwendig. [1,2] Hingegen beobachtet man, dass unter typischen Olefinpolymerisations-Bedingungen die Si-O-Bindung gespalten werden kann, was die Bildung nichteinheitlicher Strukturen zur Folge hat [3]. Dadurch wird der katalytisch dendritische Effekt verringert, was in einer Verminderung der Aktivität resultiert.

(4)



Abb. 1. <sup>29</sup>Si{<sup>1</sup>H}<sup>-</sup> NMR-Spektrum von 9 aufgenommen in CDCl<sub>3</sub>.

## 3. Experimenteller Teil

Alle Arbeiten wurden in getrockneten Lösungsmitteln und in einer gereinigten Stickstoffatmosphäre (O<sub>2</sub>-Spuren: Kupferkatalysator, BASF AG, Ludwigshafen;  $H_2O$ : Molekularsieb 4 Å, Roth) mit Hilfe der Standard-Schlenk-Technik durchgeführt. Tetrahydrofuran wurde über Natrium/Benzophenon getrocknet und frisch destilliert verwendet. Zur Durchführung der präparativen GPC diente ein System der Fa. Knauer mit der HPLC-Pumpe K 500, dem UV-Detektor K-2000 ( $\lambda = 254$  nm) sowie der Säule PSS SDV 100 Å,  $20 \times 300$  mm, Lösungsmittel: Tetrahydrofuran, f = 2 - 3 mL/min. Die IR-Spektren wurden als KBr-Preßlinge mit einem Perkin-Elmer FT-IR 1000 Spektrometer aufgenommen. Die NMR-Spektren wurden mit einem Bruker Avance 250 Spektrometer bei 298 K in CDCl<sub>3</sub> gemessen: <sup>1</sup>H<sup>-</sup> NMR (250.130 MHz), interner Standard CDCl<sub>3</sub>,  $\delta = 7.26$ ;  $^{13}C{^{1}H}^{-}$  NMR: (62.902 MHz), interner Standard CDCl<sub>3</sub>,  $\delta = 77.2$ ; <sup>29</sup>Si{<sup>1</sup>H}<sup>-</sup> NMR (49.662 MHz) externer Standard, relativ zu SiMe<sub>4</sub>,  $\delta = 0.0$ . Die Elementaranalysen wurden am Lehrstuhl für Organische Chemie der Technischen Universität Chemnitz mit einem Vario EL C,H,N-Analysator (Heraeus) bestimmt. Die ESI-TOF Massenspektren wurden mit einem Mariner Massenspektrometer (Applied Biosystems) aufgenommen. Als Lösungsmittel wurde Acetonitril verwendet. Zum Dotieren wurde KSCN zugesetzt.

#### 4. Ausgangsmaterialien

Chlordimethylsilan (1) wurde über Magnesiumspäne frisch destilliert. Die SiH-funktionalisierten Carbosiloxandendrimere 4, 6, 8 und 10 [4] sowie das Titanocendichlorid 2 [1a] wurden nach Literaturvorschriften synthetisiert.

#### 5. Synthese von 3

Es werden 0.2 g (0.600 mmol) ( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>Si-Me<sub>2</sub>CH=CH<sub>2</sub>)( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>)TiCl<sub>2</sub> (**2**) und 1.0 g (10.6 mmol) HSiMe<sub>2</sub>Cl (**1**) in 2 mL Tetrahydrofuran vorgelegt. Dazu gibt man 2 Tropfen des Karstedt Katalysators (2.2% Pt). Man lässt 12 h bei 25 °C rühren und entfernt anschließend alle flüchtigen Bestandteile im Ölpumpenvakuum, wobei 0.25 g (0.584 mmol, 97% bezogen auf eingesetztes **2**) von **3** als orangeroter Feststoff erhalten wird.

Fp.: 110 °C (Zers.). IR: (KBr) [cm<sup>-1</sup>] 1253 (s) [ $\delta_{sic}$ ]. <sup>1</sup>H NMR: (CDCl<sub>3</sub>) δ 0.33 (s, 6 H,  $Me_2SiC_5H_4$ ), 0.40 (s, 6 H, Me<sub>2</sub>SiCl), 0.6–0.8 (m, 4 H, SiCH<sub>2</sub>CH<sub>2</sub>Si), 6.58 (s, 5 H, C<sub>5</sub>H<sub>5</sub>), 6.66 (pt, <sup>3</sup>J<sub>HH</sub> = 3.4 Hz, 2 H, C<sub>5</sub>H<sub>4</sub>), 6.87 (pt, <sup>3</sup>J<sub>HH</sub> = 3.4 Hz, 2 H, C<sub>5</sub>H<sub>4</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR: (CDCl<sub>3</sub>) δ -2.2 ( $Me_2SiC_5H_4$ ), 1.5 ( $Me_2SiCl$ ), 8.6 ( $CH_2SiC_5H_4$ ), 11.8 (CH<sub>2</sub>SiCl), 120.7 (C<sub>5</sub>H<sub>5</sub>), 121.4, 129.5 ( $CH/C_5H_4$ ), 132.2 (<sup>*i*</sup>C/C<sub>5</sub>H<sub>4</sub>). <sup>29</sup>Si{<sup>1</sup>H} NMR: (CDCl<sub>3</sub>) δ -1.8 ( $Me_2SiC_5H_4$ ), 33.2 ( $Me_2SiCl$ ). Elementaranalyse: C<sub>16</sub>H<sub>25</sub>Cl<sub>3</sub>Si<sub>2</sub>Ti (427.77) ber.: C, 44.92%, H, 5.89%; gef.: C, 45.32%, H, 5.91%.

#### 6. Synthese von 5

Synthese und Aufarbeitung erfolgen analog zu 3. Es werden 0.20 g (0.600 mmol) 2 und 0.20 g (0.860 mmol) 4 zur Reaktion gebracht. Nach entsprechender Aufarbeitung erhält man 0.34 g (0.600 mmol, 100% bezogen auf eingesetztes 2) an 5 in Form einer dunkelroten pastösen Verbindung.

IR: (KBr)  $[cm^{-1}]$  1250 (vs)  $[\delta_{SiC}]$ , 1050 (s)  $[v_{SiO}]$ . <sup>1</sup>H NMR: (CDCl<sub>3</sub>)  $\delta$  -0.06 (s, 6 H, Me<sub>2</sub>Si<sup>1</sup>), 0.11 (s, 9 H, Me<sub>3</sub>Si<sup>0</sup>O), 0.38 (s, 6 H,  $Me_2Si^2C_5H_4$ ), 0.4–0.6 (m, 4 H, SiCH<sub>2</sub>CH<sub>2</sub>Si), 0.92 (m, 2 H, CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si<sup>1</sup>), 1.13 (d,  ${}^{3}J_{HH} = 6.1$  Hz, 3 H, MeCH), 1.2–1.5 (m, 6 H, CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si), 3.74 (m, 1 H, OCH), 6.56 (s, 5 H, C<sub>5</sub>H<sub>5</sub>), 6.64 (pt,  ${}^{3}J_{HH} = 3.4$  Hz, 2 H, C<sub>5</sub>H<sub>4</sub>), 6.88  $(pt, {}^{3}J_{HH} = 3.4 Hz, 2 H, C_{5}H_{4})$ .  ${}^{13}C{}^{1}H} NMR: (CDCl_{3})$  $\delta - 3.4$  (Me<sub>2</sub>Si<sup>1</sup>), -1.6 (Me<sub>2</sub>Si<sup>2</sup>C<sub>5</sub>H<sub>4</sub>), 0.7 (Me<sub>3</sub>Si<sup>0</sup>O), 7.6  $(Si^{1}CH_{2}CH_{2}Si^{2}C_{5}H_{4}), 9.3 (Si^{1}CH_{2}CH_{2}Si^{2}C_{5}H_{4}), 15.2$ (CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si<sup>1</sup>), 24.4 (MeCH), 24.3, 30.4, 39.8 (CH*C*H<sub>2</sub>*C*H<sub>2</sub>*C*H<sub>2</sub>CH<sub>2</sub>Si<sup>1</sup>), 68.9 (OCH), 120.6  $(C_5H_5)$ , 121.9, 129.4  $(CH/C_5H_4)$ , 132.4  $({}^{\prime}C/C_5H_4)$ . <sup>29</sup>Si{<sup>1</sup>H} NMR: (CDCl<sub>3</sub>)  $\delta$  -2.0 (Me<sub>2</sub>Si<sup>2</sup>-C<sub>5</sub>H<sub>4</sub>), 4.3  $(Me_2Si^1)$ , 14.8  $(Me_3Si^0O)$ . Elementaranalyse:  $C_{25}H_{48}Cl_2O$ -Si<sub>3</sub>Ti (565.66) ber.: C, 53.08%, H, 8.55%; gef.: C, 52.77%, H, 8.58%.

#### 7. Synthese von 7

Zu einer Lösung von 0.3 g (0.576 mmol) **6** und 0.7 g (2.10 mmol) **2** in 5 mL Tetrahydrofuran werden 2 Tropfen des Karstedt Katalysators gegeben. Nach 12 h Rühren bei 25 °C werden alle flüchtigen Bestandteile im Ölpumpenvakuum entfernt. Das Produktgemisch, welches noch unumgesetztes **2** enthält, wird anschließend durch GPC getrennt (f = 2 mL/min,  $t_r = 24.6$  min). Dabei fallen 0.65 g (0.429 mmol, 75% bezogen auf eingesetztes **6**) von **7** als dunkelrote pastöse Verbindung an.

IR: (KBr)  $[cm^{-1}]$  1250 (vs)  $[\delta_{SiC}]$ , 1050 (s)  $[\nu_{SiO}]$ . <sup>1</sup>H NMR: (CDCl<sub>3</sub>)  $\delta$  -0.07 (s, 18 H, Me<sub>2</sub>Si<sup>1</sup>), 0.10 (s, 3 H, MeSi<sup>0</sup>O<sub>3</sub>), 0.28 (s, 18 H,  $Me_2Si^2C_5H_4$ ), 0.4–0.6 (m, 12 H, SiCH<sub>2</sub>CH<sub>2</sub>Si), 0.92 (m, 6 H, CHCH<sub>2</sub>CH<sub>2</sub>)  $CH_2CH_2Si^1$ ), 1.17 (d,  ${}^{3}J_{HH} = 6.1$  Hz, 9 H, MeCH), 1.2– 1.5 (m, 18 H, CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si), 3.99 (m, 3 H, OCH), 6.55 (s, 15 H, C<sub>5</sub>H<sub>5</sub>), 6.64 (pt,  ${}^{3}J_{HH} = 3.4$  Hz, 6 H, C<sub>5</sub>H<sub>4</sub>), 6.86 (pt,  ${}^{3}J_{HH} = 3.4$  Hz, 6 H, C<sub>5</sub>H<sub>4</sub>).  ${}^{13}C{}^{1}H{}$ NMR: (CDCl<sub>3</sub>)  $\delta$  -4.5 (MeSi<sup>0</sup>O<sub>3</sub>), -3.4 (Me<sub>2</sub>Si<sup>1</sup>), -2.2  $(Me_2Si^2C_5H_4)$ , 7.6  $(Si^1CH_2CH_2Si^2C_5H_4)$ , 9.3  $(Si^1CH_2$  $CH_2Si^2C_5H_4$ ), 15.1 (CHCH\_2CH\_2CH\_2CH\_2Si^1), 24.0 (*Me*CH), 24.4, 30.0, 39.6 (CH*C*H<sub>2</sub>*C*H<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si<sup>1</sup>), 68.9 (OCH), 120.6 (C<sub>5</sub>H<sub>5</sub>), 121.7, 129.4 (CH/C<sub>5</sub>H<sub>4</sub>), 132.4 ( ${}^{i}C/C_{5}H_{4}$ ).  ${}^{29}Si\{{}^{1}H\}$  NMR: (CDCl<sub>3</sub>) -46.8 (Me- $Si^{0}O_{3}$ , -2.1 ( $Me_{2}Si^{2}C_{5}H_{4}$ ), 4.3 ( $Me_{2}Si^{1}$ ). Elementaranalyse: C<sub>67</sub>H<sub>114</sub>Cl<sub>6</sub>O<sub>3</sub>Si<sub>7</sub>Ti<sub>3</sub> (1520.52) ber.: C, 52.92%, H, 7.56%; gef.: C, 52.12%, H, 7.40%.

#### 8. Synthese von 9

Synthese und Aufarbeitung erfolgen analog zur Darstellung von 7. Man setzt 0.25 g (0.376 mmol) 8 und 0.61 g (1.83 mmol) 2 ein. Nach entsprechender Aufarbeitung (f = 2 mL/min,  $t_r = 21.3 \text{ min}$ ) erhält man 0.54 g (0.270 mmol, 72% bezogen auf eingesetztes 8) von 9 als dunkelrote pastöse Substanz.

IR: (KBr)  $[cm^{-1}]$  1251 (vs)  $[\delta_{SiC}]$ , 1052 (s)  $[v_{SiO}]$ . <sup>1</sup>H NMR: (CDCl<sub>3</sub>)  $\delta$  -0.08 (s, 24 H, Me<sub>2</sub>Si<sup>1</sup>), 0.27 (s, 24 H,  $Me_2Si^2C_5H_4$ ), 0.4–0.6 (m, 16 H, SiCH<sub>2</sub>CH<sub>2</sub>Si), 0.92 (m, 8 H, CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si<sup>1</sup>), 1.16 (d,  ${}^{3}J_{HH} = 6.0$ Hz, 12 H, MeCH), 1.2-1.5 (m, 24 H, CHCH2 CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si), 4.01 (m, 4 H, OCH), 6.55 (s, 20 H,  $C_5H_5$ ), 6.63 (pt,  ${}^{3}J_{HH} = 3.4$  Hz, 8 H,  $C_5H_4$ ), 6.87 (pt,  ${}^{3}J_{\text{HH}} = 3.4 \text{ Hz}, 8 \text{ H}, \text{ C}_{5}\text{H}_{4}$ ).  ${}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR: (CDCl}_{3}) \delta$ -3.5 (Me<sub>2</sub>Si<sup>1</sup>), -2.2 (Me<sub>2</sub>Si<sup>2</sup>C<sub>5</sub>H<sub>4</sub>), 7.7 (Si<sup>1</sup>CH<sub>2</sub>CH<sub>2</sub>-Si<sup>2</sup>C<sub>5</sub>H<sub>4</sub>), 9.3 (Si<sup>1</sup>CH<sub>2</sub>CH<sub>2</sub>Si<sup>2</sup>C<sub>5</sub>H<sub>4</sub>), 15.0 (CHCH<sub>2</sub>CH<sub>2</sub>-CH<sub>2</sub>CH<sub>2</sub>Si<sup>1</sup>), 24.1 (MeCH), 24.4, 30.1, 39.6 (CHCH<sub>2</sub>- $CH_2CH_2CH_2Si^1$ ), 68.8 (OCH), 120.6 (C<sub>5</sub>H<sub>5</sub>), 121.8, 129.4 (*C* H/C<sub>5</sub>H<sub>4</sub>), 132.5 ( ${}^{i}C/C_{5}H_{4}$ ).  ${}^{29}Si\{{}^{1}H\}$  NMR:  $(CDCl_3) \delta -86.4 (Si^0O_4), -1.9 (Me_2Si^2C_5H_4), 4.6$  $(Me_2Si^1)$ . ESI-TOF-MS [m/z] (rel. Int.): 2036  $[M + K]^+$ (10), 1963  $[M - Cl]^+$  (10). Elementar analyse:  $C_{88}H_{148}$ Cl<sub>8</sub>O<sub>4</sub>Si<sub>9</sub>Ti<sub>4</sub> (1997.92) ber.: C, 52.90%, H, 7.47%; gef.: C, 52.45%, H, 7.36%.

### 9. Synthese von 11

Synthese und Aufarbeitung erfolgen analog zu 7. Es werden 0.20 g (0.154 mmol) 10 und 0.38 g (1.14 mmol) 2 miteinander zur Reaktion gebracht. Nach zu 7 analoger Reinigung ( $f = 2 \text{ mL/min}, t_r = 17.2 \text{ min}$ ) erhält man 11 als dunkelrote pastöse Verbindung in einer Ausbeute von 0.34 g (0.103 mmol, 67% bezogen auf eingesetztes 10)

IR: (KBr)  $[cm^{-1}]$  1251 (vs)  $[\delta_{SiC}]$ , 1048 (vs)  $[v_{SiO}]$ . <sup>1</sup>H NMR: (CDCl<sub>3</sub>)  $\delta$  -0.02 (s, 36 H, Me<sub>2</sub>Si<sup>2</sup>), 0.12 (s, 9 H, MeSi<sup>1</sup>O<sub>2</sub>), 0.15 (s, 3 H, MeSi<sup>0</sup>O<sub>3</sub>), 0.32 (s, 36 H, Me<sub>2</sub>- $Si^{3}C_{5}H_{4}$ ), 0.4–1.0 (m, 42 H, CH<sub>2</sub>Si), 1.19 (d,  ${}^{3}J_{\rm HH} = 6.2$  Hz, 18 H, MeCH), 1.2–1.7 (m, 42 H,  $CH_2CH_2Si^1$ ,  $CHCH_2CH_2CH_2CH_2Si^2$ ), 3.94 (m, 6 H, OCH), 6.57 (s, 30 H,  $C_5H_5$ ), 6.66 (pt,  ${}^{3}J_{HH} = 3.4$  Hz, 12 H, C<sub>5</sub>H<sub>4</sub>), 6.90 (pt,  ${}^{3}J_{HH} = 3.4$  Hz, 12 H, C<sub>5</sub>H<sub>4</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR: (CDCl<sub>3</sub>)  $\delta$  -6.8 (MeSi<sup>0</sup>O<sub>3</sub>), -3.4  $(Me_2Si^2)$ , -2.2  $(Me_2Si^3C_5H_4)$ , -2.1  $(MeSi^1O_2)$ , 7.6 (Si<sup>2</sup>CH<sub>2</sub>CH<sub>2</sub> Si<sup>3</sup>C<sub>5</sub>H<sub>4</sub>), 9.3 (Si<sup>2</sup>CH<sub>2</sub>CH<sub>2</sub> Si<sup>3</sup>C<sub>5</sub>H<sub>4</sub>), 11.2  $(CH_2Si^1),$ 15.1  $(CHCH_2CH_2CH_2CH_2Si^2),$ 24.1(CH<sub>3</sub>CH), 24.4, 30.2, 39.5 (CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si<sup>1</sup>), 26.7 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si<sup>1</sup>), 65.5 (OCH<sub>2</sub>), 69.0 (OCH), 120.7 ( $C_5H_5$ ), 121.8, 129.4 ( $CH/C_5H_4$ ), 132.6 ( $C/C_5H_5$ )  $C_5H_4$ ). <sup>29</sup>Si{<sup>1</sup>H} NMR: (CDCl<sub>3</sub>)  $\delta$  -42.7 (MeSi<sup>0</sup>O<sub>3</sub>), -8.7 (MeSi<sup>1</sup>O<sub>2</sub>), -2.1 (Me<sub>2</sub>Si<sup>3</sup>C<sub>5</sub>H<sub>4</sub>), 4.4 (Me<sub>2</sub>Si<sup>2</sup>). Elementaranalyse: C145H252Cl12O9Si16Ti6 (3301.52) ber.: C, 52.75 %, H, 7.69%; gef.: C, 51.98%, H, 7.51%.

#### Dank

Wir danken der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung dieser Arbeit. Dem Freistaat Sachsen sind wir für ein Promotionsstipendium (R.B.) zu Dank verpflichtet.

## Literatur

 [1] (a) D. Seyferth, R.U.S. Wyrwa, Cont.-in-part of US 611, 495, 1999, p. 37;

(b) D. Seyferth, R. Wyrwa, U.W. Franz, S. Becke, PCT Int. Appl. (1997) 41;

- (c) D. Seyferth, R. Wyrwa, PCT Int. Appl. (1997) 94.
- [2] (a) S. Arevalo, E. De Jesus, F.J. De la Mata, J.C. Flores, R. Gomez, M.P. Gomez-Sal, P. Ortega, S. Vigo, Organometallics 22 (2003) 5109–5113;

(b) E. de Jesus, R. Andres, S. Arevalo, J.M. Benito, F.J. de la Mata, J.C. Flores, R. Gomez, Polym. Mat. Sci. Eng. 84 (2001) 1027–1028;

(c) S. Arevalo, E. de Jesus, F.J. de la Mata, J.C. Flores, R. Gomez, Organometallics 20 (2001) 2583–2592.

- [3] (a) K. Weiss, C. Wirth-Pfeifer, M. Hofmann, S. Botzenhardt, H. Lang, K. Brüning, E. Meichel, J. Mol. Cat. A 182–183 (2002) 143–149.
  (b) H. Lang, B. Lühmann, Adv. Mater. 13 (2001) 1523–1540.
- [0] 11. Lang, B. Euminann, Adv. Match. 15 (2001) 1525–1540.
- [4] R. Buschbeck, H. Lang, J. Organomet. Chem. (2004), eingereicht. [5] H. Lang, E. Meichel, T. Stein, S. Back, E. Hovestreydt,
- [5] H. Eang, E. Weiner, T. Stein, S. Dack, E. Hovesteyat, J. Organomet. Chem. 633 (2001) 71–78.
  [6] (a) K. Brüning, H. Lang, Synthesis (1999) 1931–1936;
- (b) R. Buschbeck, K. Brüning, H. Lang, Synthesis (2001) 2289–2298;
  - (c) K. Brüning, B. Lühmann, H.Z. Lang, Naturforsch. 54b (1999) 751–756;

(d) H. Lang, B. Lühmann, R. Buschbeck, J. Organomet. Chem. (2004), eingereicht;

(e) R. Buschbeck, H. Sachse, H.J. Lang, Organomet. Chem. (2004), eingereicht.